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Abstract

In this contribution, the well-known ordinal sum technique of posets is
generalized by allowing for a lattice ordered index set instead of a linearly
ordered index set, and we argue for the merits of this generalization. We
will call such a proposed sum-type construction a lattice-based sum. Our
new approach of lattice-based sum extends also the horizontal sum. We
show that the lattice-based sum of posets is again a poset. Subsequently, we
apply the results for constructing new lattices by investigating lattice-based
sums when the summand posets are lattices. We show that under certain
assumptions, the lattice-based sum of lattices will be a lattice.
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1. Introduction

Several different types of algebraic structures form a background for many
domains in mathematics and information sciences, such as many-valued log-
ics, generalized measure and integral theory, quantum logics, quantum com-
puting, etc. There are several techniques on how to build more complex
structures from simpler ones. One well known technique of this type is the
ordinal sums based on a linearly ordered index set. Ordinal sums appeared
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in Birkhoff’s extension of partially ordered sets [1], and latter in semigroup
theory by Clifford [6], see also [7, 14, 19]. Note that ordinal sums of disjoint
posets in the sense of Birkhoff are also referred to as linear sums of posets
[8]. It is worth mentioning that ordinal sums are a construction method but
also a representation tool in the framework of associative conjunctions in
many-valued logics and intersections in fuzzy set theory (triangular norms,
see [15, 20, 21, 22, 25, 30]), as well as in the probabilistic framework of copulas
modelling the dependence structure of random vectors [24, 26]. Ordinal sums
have also been introduced in the frameworks of, e.g., aggregation operators
[9, 11] and general algebraic structures such as hoops [2, 4]. An interesting
method linking ordinal sums with real data can be found in [5].

Recall that, as pointed out in [28], due to the results of Clifford [6], see
also [7, 14, 19], we know that an ordinal sum of semigroups (as introduced in
[6]) whose carriers are (bounded) lattices is again a semigroup with a carrier
equal to the ordinal sum (in the sense of Birkhoff [1]) of the summand lattices.
However, conversely, (see [28, 29]) a straightforward application of Clifford’s
ordinal sum theorem to subsets of some fixed lattice L requires L to be an
ordinal sum of its sublattices. But, and as shown in [28], there exist ordinal
sum t-norms on bounded lattices which are not an ordinal sum of some
of their sublattices (in other words, there exist ordinal sum t-norms on a
bounded lattice L although L is not an ordinal sum of some of its sublattices),
i.e., ordinal sum t-norms on bounded lattices need not be ordinal sums in
the sense of Clifford.

Motivated by the last observation we may thus wonder whether other
types of sums rather than the ordinal sums can be introduced. One possibility
is the well known horizontal sum based on an unstructured index set (i.e.,
any two distinct indices are incomparable). Horizontal sums are exploited in
the lattice theory [1, 8] and quantum structures modeling [27]. Both ordinal
sums and horizontal sums were discussed in the framework of triangular
norms on lattices, see, e.g., [28, 29]. Horizontal sum, however, is of a rather
specific nature and imposes upon the structure of the resulting lattice to be
very specific, i.e., any two distinct elements which are not involved in the
same summand lattice are incomparable, and, therefore, it would be clearly
desirable to explore further possibilities. Note that the structure of the lattice
L heavily influences which and how many t-norms on L can be defined.

A natural question thus arises whether there is an ”intermediate sum”
lying between these two (extreme) cases, i.e., the ordinal sums based on a
linear index set and the horizontal sums based on an unstructured index
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set. This paper is motivated by the later question. It is our intention to
contribute to a positive answer by proposing a new type of techniques on
how to build new algebraic structures from the fixed ones (possibly leading
to new construction methods). We generalize the well-known ordinal sums
technique of posets based on a linearly ordered index set, by allowing for
lattice ordered index set. We will call such a proposed sum-type construction
a lattice-based sum. Our new approach of lattice-based sums extends also
the horizontal sums. We show that the lattice-based sum of posets is again
a poset. Moreover, we show that if the summand posets are lattices (under
certain assumptions), then the lattice-based sums will be a lattice.

Note that we have focused in this contribution on lattice-based sums of
either posets or lattices as summand structures only. Further investigations
of this approach could deal with lattice-based sums of semigroups (inspired
by ideas of Clifford [6] in the context of ordinal sums of abstract semigroups)
and therefore shifting the focus from orders to operations. This also allows
us to study the theory of t-norms on bounded lattices from the point of
view of lattice-based sums in analogy to what has already been done in the
context of ordinal sums of t-norms (see, e.g., [15, 20, 21, 22, 25, 28, 29, 30]).
We remark that other summand operations could also be taken into account
(compare also, e.g., [10, 15, 20, 23]. These topics will be investigated in a
future sequel to the present article.

In a recent paper of Saminger-Platz [28], there is an exhaustive description
of Birkhoff’s and Clifford’s ordinal sums, as well as of horizontal sums, and
therefore we omit this description and recommend interested readers to look
on the mentioned paper. Note also, that Jipsen and Montagna (see, e.g.,
[16, 17, 18] and the related references therein) have introduced recently poset
sums (of residuated lattices). However, the carrier of these posets sums is
a subset of the Cartesian product of carriers of single summands, while the
carrier of Birhoff’s and Clifford’s ordinal sums is the union of carriers of single
summands.

Moreover, in contrast to our approach of allowing the overlapping of car-
riers of single summands (under certain conditions), non-overlapping of car-
riers of single summands in posets sums by Jipsen and Montagna excludes
the possibility to generalize horizontal sums. Recall that our intention is to
continue in the spirit of Birkhoff’s and Clifford’s ordinal sums to develop a
general concept of sums extending both ordinal sums and horizontal sums.

This paper is organized as follows. In Section 2, we introduce lattice-
based sums of posets. Subsequently, in Section 3, we apply the results for
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constructing new lattices by investigating lattice-based sums when the sum-
mand posets are lattices. We close this contribution by a short summary and
further perspectives.

2. Lattice-based sums of posets

In the sequel, (Λ,v) denotes a lattice-ordered set in which each two-
element subset {α, β} has an infimum, denoted inf{α, β}, and a supremum,
denoted sup{α, β}. (Lα,�α) denotes a partially ordered set (poset) for some
α ∈ Λ. The poset Lα need not have a top element nor a bottom element.
When Lα has a top element and/or a bottom element, the top and bottom
elements will be denoted by >α and ⊥α, respectively. Lowercase Latin letters
(e.g. “x”, “y” and “z”) will be used as variables ranging over the elements
of Lα, and lowercase Greek letters (e.g. “α”, “β” and “γ”) will be used
as variables ranging over the elements of Λ. If α, β ∈ Λ are incomparable
elements, then we will write α ‖ β. If α, β ∈ Λ such that α v β but α 6= β,
then we will write α @ β. The cardinality of a set A will be denoted by |A|.

Definition 1. Consider a non-empty lattice-ordered index set (Λ,v). The Λ
-sum family is a family of posets {(Lα,�α)}α∈Λ that satisfies for all α, β ∈ Λ
with α 6= β the sets Lα and Lβ are either disjoint or satisfy one of the
following two conditions:

(i) Lα ∩ Lβ = {xαβ} with α @ β, where xαβ is both the top element of Lα
and the bottom element of Lβ, and where for each ε ∈ Λ with α @ ε @ β
we have Lε = {xαβ}, also for all δ, γ ∈ Λ with δ ‖ γ, δ @ β and α @ γ
we have Lδ = {yδγ} or Lγ = {zδγ}, where yδγ is the top element of
Linf{δ,γ} and zδγ is the bottom element of Lsup{δ,γ}.

(ii) 1 ≤ |Lα ∩ Lβ| ≤ 2 with α ‖ β, and for each xαβ ∈ Lα ∩ Lβ, xαβ is the
top element of both Lα and Lβ and the bottom element of Lsup{α,β}, or
xαβ is the bottom element of both Lα and Lβ and the top element of
Linf{α,β}.

If necessary, we refer to this kind of a Λ-sum family as the Λ-sum family
of posets while the Λ-sum family of lattices for those whose all underlying
posets Lα are lattices. In the latter case, {(Lα,∧α,∨α)}α∈Λ denotes the
Λ-sum family, where ∧α and ∨α are the meet and join operations on Lα,
respectively. As usual, the partial order relation �α on a lattice Lα is defined
by x �α y if and only if x ∧α y = x.
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Lemma 1. Let {(Lα,�α)}α∈Λ be a Λ-sum family and x, y ∈
⋃
α∈Λ Lα with

x 6= y.

(i) If there exist α, β ∈ Λ such that x ∈ Lα and y ∈ Lβ with α @ β, then
for all α′, β′ ∈ Λ such that x ∈ Lα′ and y ∈ Lβ′ we have either α′ v β′

or α′ ‖ β′.
(ii) If there exist α ∈ Λ such that x, y ∈ Lα with x �α y, then for all

α′, β′ ∈ Λ such that x ∈ Lα′ and y ∈ Lβ′ we have either α′ v β′ or
α′ ‖ β′.

Proof. (i) It is enough to show that if x ∈ Lα∩Lα′ and y ∈ Lβ∩Lβ′ , where
α @ β and β′ @ α′, then x = y. We distinguish the following cases:

Case 1: Suppose that β′ @ β and α @ α′. Since α @ β and β′ @ α′

it follows that sup{α, β′} v α′, β and hence sup{α, β′} v inf{α′, β}. Ac-
cordingly, for each δ ∈ {sup{α, β′}, inf{α′, β}}, we have one of the following
possibilities: (a) β′ @ δ @ β with δ = α or δ = α′, (b) α @ δ @ α′ with
δ = β or δ = β′, or (c) β′ @ δ @ β with α @ δ @ α′. In all these cases, it is
straightforward (using Definition 1 (i)) to show that Lδ = {x} = {y}, that
is x = y.

Case 2: Suppose that β′ @ β and α ‖ α′. Since x ∈ Lα ∩ Lα′ it follows
that, by Definition 1 (ii), x ∈ Lα′ ∩ Linf{α,α′} or x ∈ Lα ∩ Lsup{α,α′}. In the
former case, since inf{α, α′} @ α′, we obtain that x = y by a proof exactly
similar to case (1) but with using inf{α, α′} instead of α in the proof. The
latter case has a similar proof but with using sup{α, α′} instead of α′ in the
proof.

Case 3: Suppose that α @ α′ and β′ ‖ β. This case, perfectly similar to
case (2), has a similar proof.

Case 4: Suppose that β v β′ or α′ v α. Therefore α @ β v β′ @ α′

or β′ @ α′ v α @ β. Then we can conclude (by Definition 1 (i)) that
Lβ = Lβ′ = {x} or Lα = Lα′ = {y}, respectively. Then, in both cases, we
get x = y (since x ∈ Lα ∩ Lα′ and y ∈ Lβ ∩ Lβ′).

Case 5: Suppose that β ‖ β′ and α ‖ α′. Since x ∈ Lα ∩ Lα′ it follows
that, by Definition 1 (ii), x ∈ Lα′ ∩Linf{α,α′} or x ∈ Lα∩Lsup{α,α′}. Similarly,
since y ∈ Lβ ∩ Lβ′ , it follows that y ∈ Lβ ∩ Linf{β,β′} or y ∈ Lβ′ ∩ Lsup{β,β′}.
Hence, we have one of the following four subcases:

Subcase 5(a): Suppose that x ∈ Lα′ ∩ Linf{α,α′} and y ∈ Lβ′ ∩ Lsup{β,β′}.
By noting that inf{α, α′} @ sup{β, β′}, we obtain that x = y by a proof
exactly similar to case (1) but with using inf{α, α′} and sup{β, β′} instead
of α and β, respectively, in the proof.
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Subcase 5(b): Suppose that x ∈ Lα∩Lsup{α,α′} and y ∈ Lβ∩Linf{β,β′}. By
noting that inf{β, β′} @ sup{α, α′}, we obtain that x = y by a proof exactly
similar to case (1) but with using sup{α, α′} and inf{β, β′} instead of α′ and
β′, respectively, in the proof.

Subcase 5(c): Suppose that x ∈ Lα′ ∩ Linf{α,α′} and y ∈ Lβ ∩ Linf{β,β′}.
By noting that inf{β, β′} @ α′ and inf{α, α′} @ β, we obtain that x = y by
a proof exactly similar to case (1) but with using inf{α, α′} and inf{β, β′}
instead of α and β′, respectively, in the proof.

Subcase 5(d): Suppose that x ∈ Lα ∩ Lsup{α,α′} and y ∈ Lβ′ ∩ Lsup{β,β′}.
By noting that α @ sup{β, β′} and β′ @ sup{α, α′}, we obtain that x = y by
a proof exactly similar to case (1) but with using sup{α, α′} and sup{β, β′}
instead of α′ and β, respectively, in the proof.

(ii) First note that, by Definition 1, in case that there exists α′ 6= α
such that x ∈ Lα ∩ Lα′ with x �α y and x 6= y it follows necessarily that
x = ⊥α 6= y which implies also that either α′ v α or α′ ‖ α (note that
α @ α′ contradicting x = ⊥α 6= y). Similarly, in case that there exists β′ 6= α
such that y ∈ Lα ∩ Lβ′ with x �α y and x 6= y it follows necessarily that
y = >α 6= x which implies that either α v β′ or α ‖ β′. Hence, the lemma
holds trivially if α = β′ or α′ = α . Therefore, we assume that α′ 6= α and
β′ 6= α. Then, in case that α ‖ α′ and α ‖ β′, x = ⊥α = ⊥α′ = >inf{α,α′}
and y = >α = >β′ = ⊥sup{α,β′} and hence, x ∈ Linf{α,α′} and y ∈ Lsup{α,β′}.
Since inf{α, α′} @ sup{α, β′} with x ∈ Lα′ and y ∈ Lβ′ , the result follows
immediately by item (i). In all other cases, i.e., α′ @ α or α @ β′, the result
follows immediately by item (i).

Definition 2. Let (Λ,v) be a non-empty lattice-ordered index set and let
{(Lα,�α)}α∈Λ be a Λ-sum family. The lattice-based sum

⊕
α∈Λ (Lα,�α) is

the set L =
⋃
α∈Λ Lα equipped with the order relation � defined by

x � y if and only if


∃α ∈ Λ such that x, y ∈ Lα and x �α y
or

∃α, β ∈ Λ such that (x, y) ∈ Lα × Lβ and α @ β

(1)

If necessary, we refer to this type of lattice-based sum as lattice-based sums
of posets.

Remark 1. Obviously, any (bounded) poset (L,�) can be seen as a lattice-
based sum with respect to an arbitrary lattice-ordered index set (Λ,v) with
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top element >Λ, based on a trivial Λ-sum family consisting of (L>Λ
,�>Λ

) :=
(L,�) and for all α ∈ Λ− {>Λ}, (Lα,�α) := ({⊥L}, {(⊥L,⊥L)}). To avoid
such trivial situations, from now on, we will consider only lattice-based sums
such that they differ from any of its summands.

Theorem 2. With all the assumptions of the previous definition the lattice-
based sum (L,�) =

⊕
α∈Λ (Lα,�α) is a partially ordered set.

Proof. Obviously, the binary relation � is reflexive. It is also easy (by
Lemma 1 and Definition 1) to prove that � is anti-symmetric relation. It
only remains to show that � is transitive. Therefore, we assume that x � y
and y � z.

Transitivity holds trivially if either all arguments are from the same poset
(i.e., x, y, z ∈ Lα for some α ∈ Λ) or when no involved argument is an
intersection point of two different posets due to the transitivity of �α and
v. For the remaining possibilities we distinguish the following cases:

Case 1 : Suppose that there exist α, β ∈ Λ such that x ∈ Lα, y ∈ Lα∩Lβ,
z ∈ Lβ with x �α y and y �β z. If α v β, then it is straightforward to
see that x � z. Otherwise, we have either β @ α or α||β. In case that
β @ α, then (by Definition 1 (i)) y = >β = ⊥α. Then we can conclude that
x = ⊥α = y = >β = z (since x �α y and y �β z).

In case that α||β, then (by Definition 1 (ii)) we have that y = >α = >β =
⊥sup{α,β} and hence z = y = >β = ⊥sup{α,β}, or we have that y = ⊥α = ⊥β =
>inf{α,β} and hence x = y = ⊥α = >inf{α,β}. Then, in both cases, we can
conclude that x � z.

Case 2 : Suppose that there exist α, β, δ ∈ Λ such that x ∈ Lα, y ∈ Lα ∩
Lβ, z ∈ Lδ with x �α y and β @ δ. If α v β, then it is also straightforward
to see that x � z. Otherwise, we have either β @ α or α||β.

In case that β @ α, (by Definition 1 (i)) y = >β = ⊥α and hence
x = ⊥α = y (since x �α y). Then we can conclude that x � z.

In case that α||β, (by Definition 1 (ii)) we have two possibilities y =
>α = >β = ⊥sup{α,β} or y = ⊥α = ⊥β = >inf{α,β}. In the latter case,
we can conclude that x = ⊥α = y and hence x � z. In case that y =
>α = >β = ⊥sup{α,β}, we compare α and δ. Transitivity holds trivially
if α @ δ. Otherwise, the only remaining possibility is α||δ. Hence, by
Definition 1 (i) and noting that y ∈ Lsup{α,β}∩Lβ, β @ δ and α @ sup{α, β},
we have that Lδ = {⊥sup{α,δ}} or Lα = {>inf{α,δ}}. Then, in both cases, it is
straightforward to show that x � z.
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Case 3 : Suppose that there exist α, β, δ ∈ Λ such that x ∈ Lα, y ∈
Lβ ∩ Lδ, z ∈ Lδ with y �δ z and α @ β. This case, perfectly similar to case
(2), has a similar proof.

Case 4 : Suppose that there exist α, β, β′, δ ∈ Λ such that x ∈ Lα, y ∈
Lβ ∩ Lβ′ , z ∈ Lδ with α @ β and β′ @ δ. If β v β′, then it is obvious that
x � z. Otherwise, we have either β′ @ β or β′||β.

In case that β′ @ β, then we compare α and δ. Transitivity holds trivially
if α @ δ. If δ v α, then (by Definition 1 (i) and noting that β′ @ δ v α @ β,
y ∈ Lβ ∩ Lβ′) Lδ = Lα = {y} and hence x = y = z. Otherwise, the only
remaining possibility is α||δ. Hence, by Definition 1 (i) and noting that β′ @
δ, α @ β, y ∈ Lβ ∩ Lβ′ , we have that Lδ = {⊥sup{α,δ}} or Lα = {>inf{α,δ}}.
Then, in both cases, it is straightforward to show that x � z.

In case that β′||β, then (by Definition 1 (ii)) we have two possibilities
y = >β′ = >β = ⊥sup{β′,β} or y = ⊥β′ = ⊥β = >inf{β′,β}. Hence, y ∈
Lsup{β,β′} ∩ Lβ′ or y ∈ Linf{β,β′} ∩ Lβ. So, we compare α and δ. Transitivity
holds trivially if α @ δ. Otherwise, the only remaining possibility is α||δ.
Hence, by Definition 1 (i) and noting that α @ β @ sup{β′, β}, β′ @ δ, α @ β,
and inf{β′, β} @ β′ @ δ, we have that Lδ = {⊥sup{α,δ}} or Lα = {>inf{α,δ}}.
Then, in both cases, it is straightforward to show that x � z.

We can easily check that, if the index set is linear, then the lattice-based
sum reduces to the ordinal sum, i.e., we obtain the ordinal sum of posets
in the sense of Birkhoff in which any two posets overlap in at most one
point. On the other hand, Proposition 3 clarifies the relationship between
our lattice-based sums and the well-known horizontal sum technique.

Recall that a bounded poset (L,�, 0, 1) is called a horizontal sum of
the bounded posets ((Li,�i, 0, 1))i∈I if L =

⋃
i∈I Li with Li ∩ Lj = {0, 1}

whenever i 6= j, and x � y if and only if there is an i ∈ I such that
{x, y} ⊆ Li and x �i y (compare, e.g., horizontal sums of effect algebras
[27]).

The proof of the next proposition is obvious:

Proposition 3. Let (L,�, 0, 1) be a bounded poset. Then the following are
equivalent:

(i) (L,�, 0, 1) is a horizontal sum of the bounded posets ((Li,�i, 0, 1))i∈I .
(ii) (L,�, 0, 1) is a lattice-based sum of the bounded posets ((Lα,�α, 0, 1))α∈Λ,

where (Λ,v) is the lattice in which Λ is the set I with two more ele-
ments ⊥ and > such that L⊥ = {0} and L> = {1}, and the partial
order v is defined on Λ by: for all α ∈ Λ, ⊥ v α and α v >.
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Accordingly, both the ordinal sums of posets in the sense of Birkhoff
and horizontal sums of the bounded posets are particular cases of our more
general approach of lattice-based sums of posets.

Note that the strategy described in this section focuses on the union of
the carriers and an order consistent (i.e., in agreement) with both the order
of the underlying posets and the order of the lattice-ordered index set (see
Definition 2). Accordingly, the order relation for elements from different
summand carriers is inherited from the lattice-ordered index set. We end
this section by showing some examples to clarify our ideas.

Example 1. Consider the lattice-ordered index (Λ,v) in Figure 1. It is
easy to check that each of the families associated with the structures in Fig-
ures 2, 3, 4 and 5 forms a Λ-sum family and hence each of these structures
is a lattice-based sum of posets. Note that, in Figure 4, Lδ is the singleton
poset {x}, where x is the bottom element of Lβ and the top element L⊥Λ

,
since Lβ ∩ L⊥Λ

= {x} and ⊥Λ @ δ @ β.

Example 2. Consider the lattice-ordered index set in Figure 6. The family
of non-trivial posets (i.e., they are not singletons, compare also Remark 1)
associated with the structure in Figure 7 is not a Λ-sum family and hence
the structure is not a lattice-based sum because Lα ∩Lβ = {xαβ}, with xαβ =
>α = ⊥β, δ @ β, α @ γ, but neither Lδ = {>inf{δ,γ}} nor Lγ = {⊥sup{δ,γ}}.
Note that, although the structure in Figure 7 is a poset, its order relation is
not consistent with the order of the index set (since, for x ∈ Lδ and y ∈ Lγ,
x � y while the only elements δ and γ in the index set associated with x and
y, respectively, are incomparable elements in Λ). A slight modification of the
family associated with the structure in Figure 7 by putting Lδ = {>inf{δ,γ}}
produces the Λ-sum family of posets associated with the structure in Figure 8
which is a lattice-based sum. Note that in this case the consistency holds,
namely for x and y as above, we have x � y, x ∈ Lδ ∩ L⊥Λ

and y ∈ Lγ, and
hence there exists ⊥Λ, γ ∈ Λ associated with x and y, respectively, such that
⊥Λ @ γ.

Example 3. Consider the lattice-ordered index set (Λ,v) in Figure 9. The
family of posets associated with the structure in Figure 10 is not Λ-sum family
since it violates the condition (ii) in Definition 1 where xαδ ∈ Lα ∩ Lδ is the
bottom element of both Lα and Lδ while xαδ is not the top element of Linf{α,δ}.
A slight modification of the family associated with the structure in Figure 10
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Figure 5: Family 4

by putting Lγ = Lε = {xαδ}, where xαδ is the bottom element of both Lα
and Lδ, produces the Λ-sum family of posets associated with the structure in
Figure 11 which is a lattice-based sum.

Example 4. Consider the lattice-ordered index set (Λ,v) in Figure 12. It is
routine to check that the two families of posets associated with the structures
in Figure 13 and Figure 14 are Λ-sum families since they satisfy all the
conditions in Definition 1. For example, we find that Lα1 = Lβ1 = Lδ1 = {x}
where x is the top element of L⊥Λ

. This is because Lβ2 overlaps with Lδ2
where α1 @ δ1 @ δ2 and β2 @ β3, moreover, Lα2 overlaps with Lδ3 where
β1 @ δ1 @ δ3 and α2 @ α3.
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3. Lattice-based sums of lattices

Definition 3. Given a Λ-sum family {(Lα,�α)}α∈Λ and x ∈
⋃
α∈Λ Lα. We

say that an element α∗ ∈ Λ is a maximal index of x (respectively, α∗ ∈ Λ is a
minimal index of x) if α∗ is a maximal (respectively, minimal) element of the
set Ix = {α ∈ Λ | x ∈ Lα}. Denote by Imax

x and Imin
x the set of all maximal

and minimal indices of x, respectively.

Obviously, if {(Lα,�α)}α∈Λ is a Λ-sum family with finite lattice index set
Λ , then, for all x ∈

⋃
α∈Λ Lα, the set Ix = {α ∈ Λ : x ∈ Lα} contains maximal

and minimal elements. For example, in the Λ-sum family in Figure 14, if
x is the top element of Lβ2 then Ix = {β2, β3, β4, δ2}, Imax

x = {β4} and
Imin
x = {β2}. Note that, in general, the set Ix need not have maximal or

minimal elements. For example,

Example 5. Consider the infinite lattice index set

Λ = {1− 1/n | n is a natural number} ∪ {1}

and the family of posets {(Lα,�α)}α∈Λ with L0 = {x}, L1−1/n = {y}, for all
n > 1, and L1 = {z}, where x 6= y 6= z. Hence, by Definition 1, the later
family is a Λ-sum family. However, the set Iy={1 − 1/n | n > 1} does not
have a maximal element.
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Given a Λ-sum family {(Lα,�α)}α∈Λ . Let x, y ∈
⋃
α∈Λ Lα with x 6= y. If

for all α, β ∈ Λ such that x ∈ Lα and y ∈ Lβ we have α ‖ β, then we will
write x ‖ y. If x, y ∈ Lα for some α ∈ Λ such that x �α y and y �α x, then
we will write x ‖α y. Obviously, x and y are incomparable if x ‖ y or x ‖α y
for some α ∈ Λ.

Definition 4. A Λ-sum family {(Lα,�α)}α∈Λ is said to be with (M) condi-
tion if it satisfies the following (M) condition:

(M): for all x, y ∈
⋃
α∈Λ Lα with x ‖ y, the sets Ix = {δ ∈ Λ : x ∈ Lδ}

and Iy = {β ∈ Λ : y ∈ Lβ} have both maximal and minimal elements.

Example 6. The following are examples of Λ-sum families with (M) condi-

12



•�
�

@
@

•
�
�@
@L⊥Λ

HH
HH

��
��•

Lδ1 = Lβ1 = Lα1

�
�

@
@

•
Lα2
�
�@
@

PP
PP

B
B
B��
�•
Lα3

��
��

�
�
� HH
H•
Lδ3

B
B
B

�
�
�
•�
�

@
@

•
Lα4
�
�@
@

��
��

HH
HH•

L>Λ

�
�

@
@

•
Lβ2
�
�@
@

•

HH
HH

B
B
B��

�•
Lδ2

��
��

�
�
� HH
H•
Lβ3

B
B
B

�
�
�
•�
�

@
@

•
Lβ4
�
�@
@

Figure 13: Family 1

•�
�

@
@

•
�
�@
@L⊥Λ

HH
HH

�
�
�
�
�
�
�

•
Lδ1 = Lβ1 = Lα1

�
�

@
@

•
Lα2
�
�@
@

PP
PP

B
B
B��

�•
Lα3

��
��

�
�
� HH
H•
Lδ3

B
B
B

�
�
�
•�
�

@
@

•
Lα4
�
�@
@

��
��

HH
HH•

L>Λ

�
�

@
@

Lδ2 = Lβ3

Lβ2
�
�@
@

•

�
�

@
@

•
Lβ4
�
�@
@

•

Figure 14: Family 2

tion:

(i) A Λ-sum family with finite index set Λ is a Λ-sum family with (M)
condition.

(ii) A Λ-sum family satisfying, for all x, y ∈
⋃
α∈Λ Lα with x ‖ y, that both

Ix and Iy are finite is a Λ-sum family with (M) condition, e.g., a family
{(Lα,�α)}α∈Λ of pairwise disjoint posets.

(iii) A Λ-sum family satisfying, for all x, y ∈
⋃
α∈Λ Lα with x ‖ y, that

every chain in Ix and Iy has an upper and lower bound in Ix and Iy,
respectively, is a Λ-sum family with (M) condition.

Definition 5. A semibounded Λ-sum family of posets (lattices) is a Λ-sum
family of posets (lattices) that satisfies, for all α, β ∈ Λ with α ‖ β, the set
Linf{α,β} has a top element and the set Lsup{α,β} has a bottom element.

We know that the set Ix need not have maximal nor minimal elements. Nev-
ertheless, given an element x, we shall write that α′ is a maximal (minimal)
index of x meaning that the set Ix has a maximal (minimal) element which
is equal to α′.

Lemma 4. Let {(Lα,�α)}α∈Λ be a semibounded Λ-sum family of posets. For
all x, y ∈

⋃
α∈Λ Lα with x ‖ y, it holds that:

13



(i) If x ∈ Lδ for some δ ∈ Λ and α∗, β∗ are maximal indices of y, then
>inf{δ,α∗} = >inf{δ,β∗}.

(ii) If x ∈ Lδ for some δ ∈ Λ and α∗, β∗ are minimal indices of y, then
⊥sup{δ,α∗} = ⊥sup{δ,β∗}.

Proof. We shall prove only the item (i). The second item (ii), perfectly
dual to item (i), has a dual proof.

(i) It is obvious that if α∗ = β∗ then the lemma holds. So, assume that
α∗ 6= β∗. Since x ‖ y then δ ‖ α∗ and δ ‖ β∗. Moreover, by maximality of
α∗ and β∗, we can conclude that α∗ ‖ β∗. Therefore, by Definition 1 (ii),
y = ⊥α∗ = ⊥β∗ = >inf{α∗,β∗} and hence y ∈ Linf{α∗,β∗} ∩ Lα∗ .

We distinguish the following two cases:
Case 1: Suppose that (inf{δ, α∗}) ‖ β∗ , i.e. inf{δ, α∗} and β∗ are incom-

parable.
Since y ∈ Linf{α∗,β∗} ∩ Lα∗ , inf{δ, α∗} @ α∗ and inf{α∗, β∗} @ β∗, hence,

by Definition 1 (i), Linf{δ,α∗} =
{
>inf{α∗,β∗,δ}

}
(note that the other possibility

which is Lβ∗ =
{
⊥sup{inf{α∗,δ},β∗}

}
contradicting the maximality of β∗). We

have one of the following two subcases:
Subcase 1(a): Suppose that (inf{δ, β∗}) ‖ α∗. Similar to Case 1,

Linf{δ,β∗} =
{
>inf{α∗,β∗,δ}

}
. Thus, Linf{δ,α∗} = Linf{δ,β∗} and hence >inf{δ,α∗} =

>inf{δ,β∗}.
Subcase 1(b): Suppose that inf{δ, β∗}and α∗ are comparable. If

α∗ v inf{δ, β∗}, also α∗ v inf{δ, β∗} @ β∗ contradicting the incompara-
bility to β∗. Therefore, let inf{δ, β∗} @ α∗, from which we can conclude
that inf{α∗, β∗, δ} = inf{δ, β∗} v inf{δ, α∗}. By this and since Linf{δ,α∗} ={
>inf{α∗,β∗,δ}

}
, we can conclude that >inf{δ,α∗} = >inf{δ,β∗}.

Case 2: Suppose that inf{δ, α∗} and β∗ are comparable. Hence, inf{δ, α∗} @
β∗ (otherwise, i.e. β∗ v inf{δ, α∗}, implies that β∗ @ α∗, contradiction (since
α∗ ‖ β∗)). Thus, inf{α∗, β∗, δ} = inf{δ, α∗} v inf{δ, β∗}. We have one of the
following two subcases:

Subcase 2(a): Suppose that inf{δ, β∗} and α∗ are comparable. This
implies that inf{δ, β∗} v inf{δ, α∗} (as it is proved in the Subcase 1(b)).
Thus, we obtain inf{δ, β∗} = inf{δ, α∗} and hence, >inf{δ,α∗} = >inf{δ,β∗}.

Subcase 2(b): Suppose that (inf{δ, β∗}) ‖ α∗. This implies that
Linf{δ,β∗} =

{
>inf{α∗,β∗,δ}

}
(as it is proved in the Subcase 1(a)). Since inf{α∗, β∗, δ} =

inf{δ, α∗} v inf{δ, β∗}, then we can conclude that >inf{δ,α∗} = >inf{δ,β∗}.
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Corollary 1. Let {(Lα,�α)}α∈Λ be a semibounded Λ-sum family of posets.
Let x, y ∈

⋃
α∈Λ Lα with x ‖ y, and assume that the sets Ix and Iy have both

maximal and minimal elements. Then

(i) For all δ1, δ2 ∈ Imax
x and β1, β2 ∈ Imax

y , >inf{δ1,β1} = >inf{δ2,β2}.

(ii) For all δ1, δ2 ∈ Imin
x and β1, β2 ∈ Imin

y , ⊥sup{δ1,β1} = ⊥sup{δ2,β2}.

Proof. (i) By Lemma 4 (i), >inf{δ1,β1} = >inf{δ1,β2} and>inf{δ1,β2} = >inf{δ2,β2}.
Hence, >inf{δ1,β1} = >inf{δ2,β2}. The second item (ii), perfectly dual to item
(i), has a dual proof (using Lemma 4 (ii)).

Lemma 5. Let (L,�) be a lattice-based sum of a Λ -sum family {(Lα,�α)}α∈Λ

and let x, z ∈ L with z � x. Then

(i) For any maximal index α∗ of x there exists δ ∈ Λ such that z ∈ Lδ and
δ v α∗.

(ii) For any minimal index δ∗ of z there exists α ∈ Λ such that x ∈ Lα and
δ∗ v α.

Proof. We shall prove only the item (i). The second item (ii), perfectly
dual to item (i), has a dual proof. Suppose that α∗ is a maximal index of
x and z � x. Then there exists α, δ ∈ Λ such that x ∈ Lα, z ∈ Lδ and
(δ @ α or δ = α with z �α x). The lemma trivially holds if α v α∗. Note
that α∗ @ α contradicts the maximality of α∗. Also, α ‖ α∗ leads to either
δ @ α∗ (hence the lemma trivially holds) or δ ‖ α∗. Therefore we demand
that α ‖ α∗ and δ ‖ α∗. Thus, by Definition 1 (ii) and since α∗ is a maximal
index of x, x = ⊥α = ⊥α∗ = >inf{α,α∗} and hence x ∈ Lα ∩ Linf{α,α∗}. In case
that δ = α and z �α x, we have z = ⊥α = >inf{α,α∗} = x (since z �α x).
Hence, there exists δ′ = inf{α, α∗} ∈ Λ such that z ∈ Lδ′ and δ′ @ α∗.

In case that δ @ α, we have that Lδ = {z = >inf{δ,α∗}} (by Definition 1
(i) and since inf{α, α∗} @ α, x ∈ Lα ∩ Linf{α,α∗}, δ @ α and δ ‖ α∗). Note
that the other possibility which is Lα∗ =

{
⊥sup{α∗,δ} = x

}
contradicting the

maximality of α∗. Hence, there exists δ′ = inf{δ, α∗} ∈ Λ such that z ∈ Lδ′
and δ′ @ α∗. This completes the proof.

The assumption of maximality and minimality in Lemma 4, Lemma 5 and
Corollary 1 above are indispensable for the validity of the mentioned results
as the following example shows.
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Example 7. Consider the lattice-ordered index set (Λ,v) in Figure 12 and
its Λ-sum family in Figure 15 (we leave for the reader to check that the family
in Figure 15 is a Λ-sum family). Let x be the top of Lβ2 and y be the top of
Lα2. It is obvious that x ‖ y where Ix = {β2, δ2} and Iy = {α2, α3, δ3}. For
β2, δ2 ∈ Ix and α2, δ3 ∈ Iy (note that β2 and α2 are not maximal), we have
that >inf{β2,δ3} = >β1 6= >α1 = >inf{δ2,α2}. Of course, as already proved in
Lemma 4, replacing α2 by the maximal α3 and replacing β2 by the maximal δ2

renders the equality, i.e., >inf{δ2,δ3} = >δ1 = >inf{δ2,α3}. On the other hand,
let z be the top of Lα1 and x as before, then it is obvious that z � x. Now, for
β2 ∈ Ix, where β2 is not a maximal, we see that neither δ1 v β2 nor α1 v β2,
where Iz = {α1, δ1}.
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Figure 15: Family

Note that, for x and y as in the above example, inf{x, y} = >inf{δ2,δ3} =
>δ1 = >inf{δ2,α3} where α3 and δ3 are maximal indices of y while δ2 is the
maximal index of x. Although, >inf{β2,δ3} = >β1 = >inf{β2,α3} where β2 is not
maximal, we see that inf{x, y} 6= >inf{β2,δ3} = >inf{β2,α3}. Inspired by the
last observation we introduce the following definition.
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Definition 6. Let (Λ,v) be a non-empty lattice-ordered index set and let
{(Lα,∧α,∨α)}α∈Λ be a semibounded Λ-sum family of lattices with (M) con-
dition. Put L =

⋃
α∈Λ Lα , for every x ∈ L, denote by Imax

x and Imin
x the set

of all maximal and minimal indices of x, respectively, and define the binary
operations ∧ and ∨ on L by

x ∧ y =


x ∧α y if (x, y) ∈ Lα × Lα,
x if (x, y) ∈ Lα × Lβ and α @ β,
y if (x, y) ∈ Lα × Lβ and β @ α,
>inf{α∗,β∗} if x ‖ y, α∗ ∈ Imax

x and β∗ ∈ Imax
y .

(2)

x ∨ y =


x ∨α y if (x, y) ∈ Lα × Lα,
y if (x, y) ∈ Lα × Lβ and α @ β,
x if (x, y) ∈ Lα × Lβ and β @ α,
⊥sup{α∗,β∗} if x ‖ y, α∗ ∈ Imin

x and β∗ ∈ Imin
y .

(3)

Then we say that (L,∧,∨) is the lattice-based sums of all {(Lα,∧α,∨α)}α∈Λ.
If necessary, we refer to this type of lattice-based sum as lattice-based sums
of lattices.

Example 8. Consider the lattice-ordered index set (Λ,v) in Figure 16 and
consider the family of posets associated with the structure in Figure 17. Under
the assumption that the summand posets are (semi)bounded lattices, it is
easy to check that the family in Figure 17 is a Λ-sum family and satisfies
the condition (M) (since the index set is finite). Moreover, it is easy to
see that the structure in Figure 17 is a lattice where the meet and join are
defined as in (2) and (3), respectively. For the reader convenience, we check
only the case when we have two incomparable elements. Therefore, consider
x ‖ y where x = >α4 and y = >β4. Obviously, Ix = {α0, α1, α2, α3, α4} and
Iy = {β0, β1, β2, β3, β4}. Hence, Imax

x = {α0, α1} and Imax
y = {β0, β1}. For

computing x ∧ y, the last case in (2) applies. By noting that Lδ1 = Lδ2 =
Lδ3 = {>δ4}, we find that, for each α∗ ∈ Imax

x and β∗ ∈ Imax
y , x ∧ y =

>inf{α∗,β∗} = >δ4 and hence it produces the same result. Note that if α∗ ∈ Ix
is not maximal or β∗ ∈ Iy is not maximal, x∧y need not be equal to >inf{α∗,β∗},
e.g., for α4 ∈ Ix and β1 ∈ Iy, we have >inf{α4,β1} = >α6 6= x ∧ y.

In the above example, we see that the lattice-based sum of lattices is a
lattice. The following theorem shows that this is always true.
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Figure 16: Lattice (Λ,v)

Theorem 6. With all the assumptions of Definition 6 the lattice-based sum
(L,∧,∨) =

⊕
α∈Λ (Lα,∧α,∨α) is a lattice.

Proof. The proof runs only for the operation ∧. The operation ∨, perfectly
dual to the operation ∧, has a dual proof.

First it is necessary to check that the operation ∧ is well-defined. If x ‖ y,
then the last case in (2) apply. By Corollary 1 (i), x ∧ y produces the same
result for each α∗ ∈ Imax

x and β∗ ∈ Imax
y . Otherwise (i.e., x ∦ y), by Lemma 1,

a problem can only arise if (x, y) ∈ Lα× Lβ and, say, α @ β and x ∈ Lα∩ Lβ.
In this situation the first two cases in (2) apply. But, by Definition 1 (i),
then x = >α = ⊥β, i.e., for each y ∈ Lβ we get x ∧β y = x, thus producing
the same result in either case. This is true even if there exists γ ∈ Λ with
α @ γ @ β and Lγ = {x}. The situations y ∈ Lα ∩ Lβ and β @ α are
checked in complete analogy.

Recall that, by Theorem 2 and noting that the partial order relation �α
on a lattice Lα is defined by x �α y if and only if x∧αy = x, the lattice-based
sum (L,�) =

⊕
α∈ΛLα is a poset, whereby the order relation � is given by

(1). Now, we need to prove that the operation ∧ in (2) is a meet operation
on L, i.e. for all x, y ∈ L, x∧y is the infimum in (L,�) of the set {x, y}. It is
straightforward to show that x∧y is a lower bound in (L,�) for the set {x, y}.
Let z ∈ L be another lower bound for {x, y}. Then, we need only to show
that, in case that x ‖ y, z � x ∧ y. So suppose that x ‖ y, z � x and z � y.
Then, x ∧ y = >inf{α∗,β∗}, where α∗ ∈ Imax

x and β∗ ∈ Imax
y , and hence, by
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Figure 17: Family

Lemma 5 (i), there exist δ, δ′ ∈ Λ such that z ∈ Lδ ∩Lδ′ , δ v α∗ and δ′ v β∗.
If δ and δ′ are comparable, then δ v δ′, say, and hence δ v inf{α∗, β∗}.
Then we can conclude that z � x ∧ y. Otherwise, i.e. if δ ‖ δ′, then (by
Definition 1 (ii)) z = ⊥δ = ⊥δ′ = >inf{δ,δ′} or z = >δ = >δ′ = ⊥sup{δ,δ′}.
Note that the latter case is not possible if δ = α∗ or δ′ = β∗ since it is
contradicting the maximality of α∗ and β∗, respectively. Therefore, in case
that z = >δ = >δ′ = ⊥sup{δ,δ′}, we demand that δ 6= α∗ and δ′ 6= β∗. Then,
in this case, we compare δ and β∗. Since α∗ ‖ β∗, we have either δ @ β∗

or δ ‖ β∗. If δ @ β∗, then δ v inf{α∗, β∗} and hence we can conclude that
z � x ∧ y. If δ ‖ β∗, then Lδ = {>inf{δ,β∗} = z} (by Definition 1 (i) and
the maximality of β∗ with noting that z ∈ Lδ′ ∩Lsup{δ,δ′}, δ @ sup{δ, δ′} and
δ′ @ β∗) and hence z ∈ Linf{δ,β∗}. Since inf{δ, β∗} v inf{α∗, β∗}, then it is
straightforward to see that z � x∧ y. In case that z = ⊥δ = ⊥δ′ = >inf{δ,δ′},
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z ∈ Linf{δ,δ′}. Since inf{δ, δ′} v inf{α∗, β∗}, then we can conclude that
z � x ∧ y. This completes the proof that x ∧ y is the infimum in (L,�) of
the set {x, y}.

Remark 2. Given a lattice-based sum (L,∧,∨) =
⊕

α∈Λ (Lα,∧α,∨α). The
partial order relation � on the lattice L obtained by setting x � y in L if and
only if x ∧ y = x coincides with the partial order relation given by (1). One
obtains the same partial order relation from the given lattice by setting x � y
in L if and only if x ∨ y = y.

Proposition 7. Let {(Lα,�α)}α∈Λ be a semibounded Λ-sum family of posets
with (M) condition, and let (L,�) =

⊕
α∈Λ (Lα,�α) be its lattice-based sum.

Then, for each x, y ∈ L such that x ∈ Lα and y ∈ Lβ for some α, β ∈ Λ
with α 6= β, or such that x, y ∈ Lα for some α ∈ Λ with x or y are equal to
one of the boundaries of Lα, the supremum and the infimum of the set {x, y}
exist in (L,�).

Proof. Replace each Lδ by L′δ = {⊥δ,>δ}. If Lδ is a singleton, then so is
L′δ, because ⊥δ = >δ. In case that x ∈ Lα, replace L′α by L′α = L′α ∪ {x}.
Hence each L′α contains at most three elements and at least one element,
that is either L′α = {⊥α = >α}, L′α = {⊥α,>α}, or L′α = {⊥α, z,>α} where
z ∈ {x, y}. Trivially, each L′α is a lattice and thus we are creating new Λ-
sum family {(L′α,�α)}α∈Λ but Λ-sum family of lattices for which x, y ∈ L′ =⋃
α∈Λ L

′
α and the lattice-based sum construction in the sense of Definition 6

can be applied. Hence, by Theorem 6, the lattice-based sum
⊕

α∈Λ (L′α,�α)
is a lattice and hence the supremum and the infimum of the set {x, y} exist.

4. Conclusions and future work

In this contribution, we submit to the reader a proposal of a new con-
struction method for ordered structure which is promising for the further
development of many-valued logics, generalizing both ordinal and horizontal
sums. We generalized the well-known ordinal sum technique of posets to
what we call lattice-based sum of posets by allowing for lattice ordered index
set instead of linearly ordered index set, showing that the lattice-based sum
of posets is again a poset. It is pointed out that our new approach extends
also the horizontal sum based on an unstructured index set (i.e., any two dis-
tinct indices are incomparable). Moreover, we showed that if the summand
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posets are lattices, then the lattice-based sum will be a lattice provided that
the summand lattices satisfy a condition (M), accordingly, any two distinct
and incomparable elements which are not involved in the same summand
lattice have both maximal and minimal indices. Perhaps, the most impor-
tant consequence of such a sum-type technique on how to build new posets
(lattices) from the fixed ones is that a new construction method arises.

Note that though a consecutive repetition of standard ordinal and hor-
izontal sum constructions is covered by our approach, the opposite is not
true. First of all, we can deal also with unbounded posets what is not the
case of horizontal sums (common top and bottom elements of all involved
posets are required by horizontal sum construction). Next, the consecutive
repetition of mentioned classical construction has impact on the structure
of the lattice-ordered index set, i.e., we have finitely many chains and un-
structured parts, and techniques overcoming this defect will be superfluously
costly (e.g., transfinite induction...).

These considerations would inevitably lead one into studying the expres-
sive power of lattice-based sums. Thus, it might be worthwhile looking for
a characterization of all lattice-based sums that can be obtained as ordinal
and horizontal sums of the given summands. For this end, the relationship
between series-parallel posets and N-free posets may prove useful, and arti-
cles [12, 13, 31] may be relevant. Also, it might be worthwhile looking for
a characterization of posets that are not decomposable into a lattice-based
sum in a nontrivial way. But first one should define precisely what is meant
by a trivial or a nontrivial decomposition (see Remark 1).

One possible meaningful way (as suggested by an anonymous referee) to
study the expressive power of lattice-based sums could be the following. We
say that a class C of posets is closed under taking lattice-based sums, if for
all (Λ,v) ∈ C and for all (Lα,�α) ∈ C (α ∈ Λ) such that Λ is a lattice
and {(Lα,�α)}α∈Λ is a Λ-sum family, we have

⊕
α∈Λ(Lα,�α) ∈ C. Then we

could ask the following questions. What are the classes of posets closed under
taking lattice-based sums? Given a set S of posets, what is the smallest class
of posets that contains S and is closed under taking lattice-based sums (i.e.,
the class generated by S)? We suggest these questions – as well as the two
mentioned in the previous paragraph – as a topic of future research.

Clearly, inspired by ideas of Clifford [6] (in the context of ordinal sums
of abstract semigroups) and [15, 20, 21, 22, 29, 25, 28, 30] (ordinal sums of
t-norms), further development of this approach could deal with the lattice-
based sums of semigroups; then meet operations can be replaced by semi-
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group operations. This also allows us to study the theory of t-norms on
bounded lattices from the point of view of lattice-based sums. We remark
that other summand operations could also be taken into account (compare
also, e.g., [10, 15, 20, 23]). These topics will be investigated in a future sequel
to the present article.
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